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Introduction 

Electrocatalysis  may be defined as the  r e l a t ive  a b i l i t y  of d i f f e r  
ent substances, when used as electrode surfaces under t h e  same condi- 
t ions,  t o  accelerate t he  rate of a given electrochemical process. 

Unlike ca ta ly t ic  e f fec ts  i n  the  conventional sense, the  r e l a t ive  
e lec t roca ta ly t ic  propert ies  of a group of materials at  a given temp- 
e ra ture  and concentration of reactant and product a r e  not necessarily 
constant. They may vary owing t o  the  d i f fe ren t  dependence of r a t e s  on 
e l e c t r i c a l  potent ia l ;  t ha t  is, var ia t ion i n  Tafel slope with substrate, 
f o r  the  same electrochemical reaction. These differences i n  Tafel 
slope may come about by var ia t ion of the symmetry factor  from one sub- 
s t r a t e  t o  another, o r  by changes i n  the  adsorption isotherm of reac- 
t i o n  intermediates. A problem of f'undamental importance i n  assessing 
e lec t roca ta ly t ic  behavior is, therefore, the ra t iona l  po ten t ia l  at 
which r e l a t ive  react ion rates should be compared. It i s  generally con- 
sidered that this  po ten t i a l  should be the potent ia l  of zero chuge  
(P.z.c.) of t h e  pa r t i cu la r  substrate,  as under these conditions there  
is no charge-dependent e l e c t r i c  f i e l d  t o  influence electron t ransfer  
rates (1). 

It i s  more convenient i n  pract ice  t o  measure rates a t  constant 
po ten t ia l  with respect t o  a standard electrode. Under these conditions, 
e lec t ronic  factors  which a re  involved i n  the  chemical (p. z . c.  ) r a t e  
equation cancel, so t h a t  a simplified dependence of r e l a t ive  r a t e  on 
free energies of adsorption of reaction intermediates r e su l t s  provided 
the symmetry fac tor  i s  constant (2,3). This point w i l l  be more com- 
p l e t e ly  discussed below. 

The concept of e lectrocatalysis  i s  rather recent, and has a r i sen  
since t h e  advent of research i n t o  f i e 1  c e l l s  as a p rac t i ca l  means of 
energy conversion. The performance of such devices depends, at  the  
present stage of technology, almost en t i r e ly  on problems concerning 
electrode react ion rates ra ther  than, f o r  instance, mass-transport 
processes. 
acid electrolyte ,  me limited by the  i n t r i n s i c  r a t e  of the  oxygen 
electrode. To date, platinum i s  the most effect ive material f o r  both 
hydrogen oxidation and oxygen reduction i n  acid medium. There is, 
however, a considerable difference i n  t h e  r e l a t i v e  rates at a given 
overpotential  that can be maintained on a platinum electrode f o r  
these two processes. Under ordinary conditions, the  hydrogen oxida- 
t i o n  r a t e  is approximately l o 7  times more rapid than that of oxygen 
reduction. "his difference r e su l t s  i n  an effect ive loss i n  efficiency, 
due t o  cathode polarization, of perhaps 30 percent, and requires t h e  
use of platinum metal ca ta lys t s  i n  high loadings. This  slow r a t e  of 
the  oxygen-reduction react ion i s  well bown, and i s  manifested i n  
p rac t i ce  by the l o w  open-circuit po ten t ia l  of the cathode which 
corresponds t o  rate cont ro l  by an a l te rna t ive  process, t h e  electrode 
po ten t i a l  being determined by platinum oxidation (4), or  impurity 
oxidation ( 5 ) ,  or  by some pa ras i t i c  redox process. 

Typical &/02 fue l  cel ls ;  working at low temperatures i n  
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The hydrogen electrode process on platinum has one of t h e  fastest 

spec i f ic  rate constants hown (apart  from metal-metal ion  reactions of 
react ive metals and some redox processes) i n  aqueous solutions,  where- 
as oxygen reduction on platinum must by comparison be considered a 
very slowprocess, though it i s  by no means the slowest react ion t h a t  
has been observed. * 

i s  the  wide range of rate constants t ha t  me encountered fo r  the same 
process - f o r  instance, some 10 orders of magnitude f o r  the  hydrogen 
electrode reaction ( 6 ) ,  and at l eas t  5 orders of magnitude fo r  oxygen 
evolution on oxidized platinum (7 ) .  
laboratory has shown t h a t  r a t e  constants for  oxygen reduction on 
oxide-free noble metals i n  acid e lec t ro ly te  vary by approximately 7 
orders of magnitude. 
fo r  instance hydrocarbon oxidat ion, have been noted. 

I n  this paper, past  work on electrocatalysis  w i l l  be b r i e f ly  re -  
viewed and correlated with some recent work on the  e lec t roca ta ly t ic  
properties of Group V I 1 1  and I b  metals and al loys f o r  the  oxygen re- 
duction reaction i n  acid solution. Some of t he  consequences of t h i s  
study concerning the f u e l  c e l l  oxygen electrode a re  discussed. I n  
par t icular ,  the e lec t roca ta ly t ic  mechanisms of the  hydrogen and 
oxygen electrodes will be explored i n  detail, t o  determine the  
likelihood of  h t w e  increase i n  02 electrode exchange currents.  

One striking f ac t  about reaction rates on d i f fe ren t  metal substrates  

Recent work conducted i n  t h i s  

Wide r a t e  var ia t ions fo r  other types of reactions, 

The Mechanism of Electrocatalysis 

I n  general, the  study of spec i f ic  reactions has given some insight 
i n to  the factors  control l ing r a t e s  on d i f fe ren t  electrode substrates.  
The reactions most broadly studied f o r  t h i s  purpose have been - 
1. Hydrogen evolution i n  acid solut ion (6, 9, 10).  

2. Oxygen evolution on noble metal oxides i n  acid solut ion (11,12). 

3.  Certain hydrocarbon reactions, f o r  example, ethylene oxidation (13, 
14). 
I n  comparing react ion rates fo r  a specif ic  process on d i f fe ren t  

metals, it is  important t o  f irst  ascer ta in  tha t  two necessary condi- 
t ions  are met : 

1. The process i n  question must be the same on the group of metals - 
that is, the rate-determining s t e p  must be the  same i n  each case, 
and t h e  react ion path, at  least as far as the rate-determining 
step, must also be the  same. 

The process has been compared on the  d i f fe ren t  metals under the 
same conditions - t h a t  is, with the  same surface preparation i n  
solutions of the  highest possible purity, so t h a t  poisoning of  the 
electrode surface by adsorption of capi l lary-act ive matter is 
avoided, 

2. 

~~ 

* Oxygen reduction on gold ( 8 ) ,  and hydrogen evolution on lead or 
mercury (6 )  are several  orders of magnitude worse. 
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The Hydrogen Evolution Reaction 

hydrogen evolution reac t ion  i n  acid solution on the majority of metals 
studied involves the  sequence 

It is generally considered (15-22) tha t  t he  mechanism of t h e  

H30+ + M + e- - M - H + H20 (Discharge reaction) Step I 

which i s  then followed by e i the r  

bo+ + M - H + e- + M + H20 + H2 (Electrochemical or  ion + atom 
react ion)  Step IIa 

o r  
2~ - H -. 2 M  + & (Combination react ion)  Step I I b  

where M i s  a surface s i t e  on t h e  metal. 

with t h e  properties o f  t he  electrode substrate  date back several  
decades. 
overvoltage and t he  rate of ca t a ly t i c  hydrogen combination. 
t i ons  between exchange current and interatomic distance (24-27 metal 
surface energy (28,29), cohesion energy (30), melting point (22) 
and compressibil i ty (31), have been discussed b 
I n  a similar way, Boclcris and co-workers (6,32-$4) showed t h a t  the 
thermionic work f'unction of the  metal and i t s  hydrogen overvoltage 

- were empirically re la ted .  Horiuti and Polanyi (35), followed by 
other authors (36 ,37 )  had previously pointed out that t h e  rate o f  
t h e  discharge reac t ion  (I) should be increased ( tha t  is, the activa- 
t i o n  energy decreased assuming a constant entropy of act ivat ion)  i f  
t h e  heat of adsorption of atomic hydrogen on t h e  metal surface were 
high. 
re la t ionship  by considering an approximate calculat ion of t he  S - H 
bond energy, based on the  Pauling equation (39) as used by Eley ( 4 0 )  
f o r  chemisorption phenomena, i . e., 

Attempts t o  cor re la te  the overpotential  of hydrogen evolution 

Bonhoeffer (23) i n  1924 noted a connection between hydrogen 
Correla- 

a number of autLors. 

Riietschi and Delahay (9,38) attempted t o  establish t h i s  

% - H = F  1 ( % - M M D H - H X )  + 23.06 (% - XHI2 

where % - i s  the  metal-metal 
atom bond strength, % - i s  the  adsorbate bond strength, and $, 
XH are the  e lec t ronegat iv i t ies  of t he  metal and adsorbate respec- 
t i ve ly .  A s  metal-metal atom forces a r e  short  range, DM - 
t o  ~ , / 6  f o r  close-packed metals (9), where Ls i s  the la ten t  heat of  
sublimation. These authors (9 )  established that a '  good dependence of 
l o g  rate on q4 - 
neglecting the  electronegat ivi ty  terms; tha t  is, they showed that f o r  
ce r t a in  metals a correlation'between Ls and the r a t e  of t he  hydrogen 
electrode reaction existed.  
cohesion energy, melting point, compressibility and surface energy, 
t h i s  re la t ionship  i s  i n  good agreement w i t h  other correlat ions 
based on these pammeters (26,28-31). Conway and Bockris (6 

i s  the  M - H bond strength, DM - 

i s  equated 

e d s t e d ,  but they calculated the lat ter value 

A s  Ls i s  closely re la ted  t o  hardness, 

developing earlier ideas of Bockris and h i s  coworkers (32,34 
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t h a t  an approximately l i nea r  re la t ionship exists between log i and 
electronic  work-flmctions f o r  many metals w i t h  a second (inverse) 
re la t ionship  appment f o r  a few metals (Tl , Pb) with very low 
hydrogen evolution rates (i 
tha t ,  because of the empiri8al l i nea r  relationships between work 
function and Ls, and work function and %, which hold f o r  many metals, 

% - 

10-11 - l o - i q .  They a l so  point out 

can be wri t ten i n  the  form 

A ( P 2 + B @  + C  (2 )  

where @ i s  the work function, and A, B, and C are constants. I n  con- 
sequence of this re lat ion,  and as log i, and @ a re  l i nea r ly  dependent, 
a quadratic expression connects log io and the  calculated (o r  experi- 
mental*) values of DM - 

The same authors show that other re la t ionships  exist between 4 
and the  percentage d 
single-bond o rb i t a l s )  
interatomic distance serves t o  cor re la te  e a r l i e r  obser- 
vations of rate dependence on the  l a t t e r  quantity (32) .  
l i nea r  % d character-log io re la t ion  i s  observed fo r  the 
metals. 

(41,42). 

($ d contribution t o  intermetal l ic  dsp 
i s  a function of atomic number and 

Similarly, a 
t rans i t ion  " 

The quadratic p lo t  of l o g  io (or  overpotential) against  %M 
l i k e  the  log i 9 plot,  two d i s t i n c t  approximately linear regions, 
with a pos i t iv  slope fo r  t he  t r ans i t i on  metals and Group Ib, together 
with Al, Be, and Ga, whereas a negative slope appears f o r  Hg, T1, 
and Pb. Conway and Bockris (6)  a t t r i b u t e  this t o  the  f ac t  t h a t  on the  
la t ter  three  metals, which probably have much lower values than 
calculated owing t o  t h e i r  e lectronic  structures,  rea!kZnHI i s  rate 
determining, whereas on the  remaining metals react ion IIa i s  rate 
determining. 

Volcano Plots  

t i ons  I and IIa as follows: 

has, 

We may, i n  principle,  write the forward r a t e  equations f o r  Reac- 

A% -0 

(I) i = F - [q (1 - j3)*-@ ( 3 )  

( I I a )  i = F - kT C H I C H + I ~ ~ ~  - M l  + BAG, - mi2 RT 
4 

h ( 4 )  

where [w, [HI and [ ~ 1  a re  the  a c t i v i t i e s  of metal sites, adsorbed 
hydrogen, and hydroxonium ions, Ago and MA are metal independent 
(i. e., adsorption independent) free energies of t he  act ivated complex 
at cp = 0. AG, is the f r e e  energy of adsorption of H, and (D is the 
poten t ia l  with reference t o  an a rb i t r a ry  reference electrode. The 
other symbols have t h e i r  usual  meanings. Following Frumkin (2) ,  no 
expression f o r  (P, t he  work flmction, ears i n  t h e  rate equation, as 
t h i s  quantity i s  self-cancell ing (2,3?%). 

* Experimental and calculated (metal-hydride) values of DM - 
.- 

me 
i n  relat ive17 good agreement, but differ by about 15 kcal, due t o  
t h e  surface 'image potent ia l"  (45) .  
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Putting 8 = CHI and 1 - 8 = [MI, w e  have 

4 

( 7 )  A% Assuming that 

That is, t he  Langmir isotherm applies f o r  the  equilibrium process IIb,  

= (p&)% * exp - 

1 1 & + M +  M -  H 

Subst i tut ing f o r  8 ,  w e  obtain 
-8 

These equations are s i m i l a r  t o  those developed by Parsons ( 4 )  and 
Gerischer (48), and indicate t h a t  r a t e s  f o r  both reactions have, 
under these  conditions, the  same dependence on AG,,. They indicate  
tha t  log i would be, at fixed poten t ia l  and fixed pH2 and [H+], an 
ascending and  descending l inear  f’unction of AGH with a maxlm a t  
AG,,=O. 
Temkin isotherm appl ies ,  a development of these equations show 
t h a t  a s imilar  r e l a t i o n  between i. and bG,, , but  with a plateau- 
l i k e  ra ther  a sharp maximy around AGH=Oh should occur. 
p lo ts  were given the  name vclcano p lo ts  by Balandin (49), 
though he discussed ca t a ly t i c  ra ther  than e lec t roca ta ly t ic  
cases. 

I f  AG& l i n e a r l y  coverage dependent, tha t  is, j.f the  

Such 

It has been claimed (50)  t h a t  t h i s  approach w i l l  explain the f ac t  
t h a t  metals such as  Pb, Hg and ‘Il have low exchange currents 
(&,, > 01, whereas metals such as P t  o r  Pd (AGH presumed t o  be - 0 )  

have high values. I n  a s i m i l a r  way, metals w i t h  AG ,, < 0 (W, Mo, T a )  
a l so  have low exchange currents.  

A s  AGH values me not generally known, the  general  trend of  t h i s  
parameter i s  equated t o  t h e  experimental ( o r  calculated) AH,, ( i .e. ,  

I& - 
i s  metal independent - t h a t  is, it corresponds only t o  the  loss of 3 
t r ans l a t iona l  degrees of  freedom ( 9 ) .  This assumption is, however, 
probably not justified, as there i s  evidence t h a t  a compensation effect  
between AS” and &I, e x i s t s .  

values (6,9) assuming tha t  the  standard entropy of adsorption 

Tl-,i_s implies t.hat, on surfares  where 
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I DM - 
adsorbate. 
adsorbate mobility and hence increased ASH r e su l t s .  T h i s  i s  w e l l  
i l l u s t r a t e d  by Brei ter  s (51) experimental correlat ion of AH and 
ASH on platinum in di f fe ren t  e lectrolytes  where' DM - 
by d i f fe r ing  degrees of anion adsorption. 

( 47) assump- 
t i o n  t h a t  the  adsorbed hydrogen on the surface of t he  electrode i s  i n  
equilibrium with gaseous hydrogen v i a  t h e  combination react ion (Equa- 
t i o n  7) .  
react ion t o  be A s  the  process i s  non-electrochemical, i t  is 
hard t o  see how the Hi -D 2H equilibrium can be maintained i n  the Tafel 
region (i > 10-1 A/sq cm). On t h i s  basis, i t  would therefore  seem 
that this thermodynamic equilibrium i s  not t h e  or ig in  of the  volcano- 
type i - % -  re lat ionship noted by Bockris and Conway (i  increasing 
with % - 
t i a l  dependence of i on increasing DM - 
(Equations 5, 9) as suggested by Conway and Bocb i s  (6,41,42,52), forPb, 
Hg, and 12, where low coverages of molecular hydrogen a re  encountered, 
and where A G ~  i s  large and posit ive.  For the Group Ib and t r ans i t i on  
metals (except plat inoid metals a t  low overpotentials (53,551, and 
perhaps Fe (l)), the  ion and atom reaction I s  considered t o  be 
rate determining (56). 

t i ons  is  

is  high,  AS^ i s  low owing t o  the  high degree of order i n  the 
Similarly, on surfaces w i t h  a low DM - H, increased I 

i s  modified 

) A second, more important objection involves Parsons 

On platinum, Pmsons (47) has estimated t h e  io of this  
1 

f o r  Pb, Hg, 12, decreasing with DM - f o r  t rans i t ion  
I metals (6 ) .  The r e l a t i v e  r a t e s  seem best explained by the  exponen- ! 

fo r  the discharge reaction 

I n  this  case, we can assume t h a t  t he  pre- 
1 vious step, t he  discharge react ion (I) i s  i n  pseudo-equilibrium. 

librium condition f o r  this process (assuming Langmuir condi- 

/ 

(11) e 
= [ ~ t ~ e x p  - AG,,/RT exp - F ~ / R T  

[@I exp - AGH RT exp - Fv/RT Hence 
e = + LH,J 

where 8 i s  the  surface coverage in [ H 3 .  
Subst i tut ing t h i s  i n  Equation 6 w e  obtain 

-D exp - (1 + 8 )  F ~ R T  - ~ A G , , / R T  
(13) exp - A G G T  - FQ/RT i a y CH+l2 

+ IKf, 

This expression has exactly t h e  same form as Equation 10, and i@lies 
again that a volcano-type r e l a t ion  should occur, with i decreasing 
with decreasing AGH (increasing DM - H) fo r  AG,, < 0 (52,57). The 
l a t t e r  condition implies a high coverage of H, and hence favors the 
ion and atom rate-determining step,  as suggested by Conway and 
Bocb i s  f o r  these metals (6,52,56,57). 
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Heats of Activation and l?requency Factors 

avai lable  f o r  a few metals. Glasstone, Laidler, and w i n g  (58) quote 
some ear ly  values, which indicate  general s imi la r i ty  of preexponential 
terms. Later values, obtained under conditions of high puri ty  by 
Parsons (55) f o r  t h e  combination and discharge reactions on platinum, 
indicate  that for  both t h e  heat of act ivat ion i s  about 5.2 kcal/mole 
at t he  reversible  poten t ia l .  I n  the same work, Parsons (55) (see also 
Temkin (59))  derives theore t ica l ly  the preexponential terms of the 
combination, ion, and atom and discharge reactions.  For the discharge 
reaction, the quant i t ies  are about 2 X l o 6  A/sq ern (8 - 0 ) ,  and 2 X l o 7  
A/sq cm (e -t 1); f o r  the  combination react ion 3 X lo2 A/sq cm (e + 0 )  
and 2 X lo7 A/sq cm (6 - 1); and for  the  ion plus atom reaction 

[e 
Conway, Beatty, and DeMaine (60)  measured act ivat ion energies on a 

se r i e s  of copper-nickel alloys.  They found t h a t  i n  each case the ac t i -  
vation energy w a s  temperature dependent, but tha t  the value fo r  copper 
was l e s s  than that fo r  n icke l  ( i n  agreement w i t h  other workers (61, 
6 2 ) ) .  The values f o r  t he  al loys were nonlinearly dependent on the atom 
percentage of the  components. However, at constant overpotential, t h e  
difference i n  the  heats of act ivat ion on copper and nickel  w a s  shown 
t o  be reasonably consis tent  with experimental values of DM - 
these metals, assuming Equation 13 appl ies  i n  i t s  simplified form 
f o r  AG, negative (i 0: exp + (1 - 8 )  A G D T ) ,  hence energy of activation 
R 

on copper indicates tha t  i n  a l l  probabili ty the Arrhenius preexponen- 
t i a l  terms f o r  these two metals a re  very different ,  and perhaps implies 
a higher coverage of H on nickel.  Similarly, i f  coverage i s  markedly 
t emperature-dependent , t he  nonlinearity of the Arrhenius p lo t s  is 
accounted for. 

On the  basis  o f  Parsons' (55) and Temkin's (59) theore t ica l  calcu- 
la t ions  and t h e  experimental data  o f  Conway et  al. (60)  the assump- 
t i o n  of a constant matt ( o r  preexponential factor, assuming 8 t o  be 
constant)  over a series of metals is improbable. It i s  c lear  from 
Equation 13 , assuming AG, i s  l a r g e  and negative, tha t  

Heats of ac t iva t ion  fo r  the  hydrogen evolution reaction a re  only 

assuming a mobile act ivated complex) 40 A/sq ern (e  0 )  and l o 4  A/sq cm 
1). These values are i n  reasonable agreement w i t h  experiment (55).  

on 

(1 - 8 )  AH,, . Hence, the f ac t  that io on N i  i s  greater  than tha t  

i 0: exp (1 - 8 )  AG@T 

Hence, assuming tha t  t he  preexponential fac tor  i s  independent of t he  
metal, w e  may write 

2.303 log i a (1 - p)AHy/RT 

1 Fence, w i t h  ,g = 7, the  slope of. the  l inear  log i - AHH D l o t  should be 
1/4.6 RT (about 0.36).  
fo r  metals with a la rge  AH,,, the  slope i s  appreciably l e s s  than t h i s ,  
again suggesting that t h e  preexponential factor  i s  imporkant i n  deter-  
m i n i n g  the  overal l  rate, and tha t  a "compensation e f fec t  between 
AHact and the  preexponential factor,  as is  of ten noted i n  gas-phase 
ca t a ly t i c  processes, appears t o  apply i n  t h i s  case. 

Data of Conway and Bockris (6,41) show t h a t  
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Recently, Bockris, Damjanovic, and M a n n a n  (10)  have reexamined 

the hydrogen electrode react ion on a number of pure metal and a l loy  
systems. The systems were chosen t o  maximize the change i n  one par- 
t i c u l a r  parameter - f o r  instance, d-orbi ta l  vacancies o r  internuclear 
distance. 
constants on $ d character and d-orbi ta l  vacancies. I n  addition, io 
appears t o  be l i nea r ly  dependent on internuclear  dis tance (which 
depends on and electronegativity when other e lectronic  character- 
i s t i c s  a.re constant). Essentially,  these r e su l t s  confirm tha t  for  
s i m i l a r  systems, i depends on those charac te r i s t ics  which determine 
the  strength of the M-H bond. 

log io on t h e  heat of adsorption of atomic hydrogen, but experimental 
evidence of the e f f ec t  of the  preexponential fac tor  i n  the  rate ex- 
pression i s  not at  present available.  

Electrocatalysis i n  Other Systems 

Riietschi and Delahay (63) have examined Hickling and Hill's (64) 
oxygen evolution overpotential  data in terms of the  s t rength of the 
M-OH bond, using arguments similar t o  those f o r  the hydrogen evolu- 
t i oh  electrode. The rate-determining s t ep  f o r  t he  oxygen evolution 
react ion i n  acid solut ion i s  generally accepted t o  be the  water dis- 
charge react ion (65,66). 

The r e s u l t s  obtained again show the  dependence of r a t e  

The general picture  tha t  emerges i s  an approximate dependence of 

s + GO - S-OH + H+ + e- 

where S is  an ac t ive  surface s i te  on the  (oxidized) metal surface. 
On this basis, the  heat of act ivat ion of the oxygen evolution reaction 
should depend on the  s t rength of the S-OH bond. 
( 6 3 )  assumed tha t  this could be equated t o  the  bond s t rength of the  
metal hydroxide, which i s  reasonable i n  view o f  the f ac t  t ha t  at 
oxygen evolution potentials,  metal l ic  electrodes are always covered 

L stroms on P t  (67) .  

examined ethylene oxidation i n  acid solut ion on a series of noble 
metals and al loys.  The latter workers established tha t  a volcano- 
type relat ionship existed when log i at constant overpotential  w a s  
p lo t ted  against d- o r b i t a l  vacancies o r  Ls. 
of magnitude pos i t ive  change i n  i w a s  noted i n  going from Au t o  P t ,  
with a fur ther  negative change of approximately three  decades through 
iridium, rhodium and ruthenium t o  osmium. 

Ethylene oxidation w a s  shown t o  have a negative react ion order 
on platinum, and t h i s  w a s  in terpreted by postulating that increasing 
ethylene coverage reduces.the coverage of adsorbed OH rad ica ls  on t h e  
electrode (13). The OH i s  derived from the  oxida t im of water, and 
i s  d i r ec t ly  involved i n  the  chemical rate-determining step.  This rate ,  
on the ascending side of the  volcano, i s  controlled by increasing metal- 
adsorbate bonds, whereas in the descending side the major influence i s  
i n  the preexponential term of  the rate expression - t ha t  is, the de- 
creasing coverage of ethylene i n  the face of increasing -0 or  -OH 
ads orp t ion. 

m e t s c h i  and Delahay 

i t h  a super f ic ia l  oxide layer, which reaches a thickness o f  several  

Dahms and Bockris (IS), and Kuhn, Wroblowa and Bockris (14) have 

Approximately two orders 
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A process of t h i s  type indicates a spec ia l  case of  e lectrocatalysis  

where inc reas im rate as the metal-adsorbate bond-strength increases 
i s  compensated hv decreasing coverage due t o  competitive adsorp- 
t ion .  'l'hls e m  would be expected t o  be even more marked under we  
Temkin conditions of adsorption, where the  strength of the metal- 
adsorbate bond f a l l s  as the t o t a l  coverage of t he  adsorbate increases. 

Oxygen Reduction on Phase Oxide-Free Precious Metals i n  Acid Solution 

Recent work i n  this laboratory on the oxygen reduction reaction 
carried out on a range of precious metals and al loys i n  85% orthophos- 
phoric acid solut ion under high puri ty  conditions indicates  tha t  
init ial  electron transfer t o  an adsorbed oxygen molecule i s  r a t e  
determining on Group I b  and Group VI11 metals and alloys, provided the 
metal surface w a s  i n i t i a l l y  i n  the  reduced condition - t h a t  is, it 
car r ied  no phase oxide. 

ton, thus:  
I n  a l l  probabi l i ty  the rate-determining s tep  a l so  involves a pro- 

S + O2 + H+ + e- + S02H 

This is i n  agreement with pH dependence work carried out on p l a t i -  
num electrodes i n  dilute perchloric acid a t  constant ionic  strength 
(68) and is i n  general  agreement with mechanisms suggested fo r  other 
metals in acid e l ec t ro ly t e  (69,70). A t  potent ia ls  above about 800 mV 
on plathum, 650 mV on rhodium, and 750 mV on palladium, intermediate 
coverages of absorbed oxygenated species derived from water oxidation 
a r e  present on these metals (71,72,73). The coverage of these species 
is linearly potent ia l  dependent, and can be approximately described by 
the  Temkin isotherm (72,73). On i r i d ium (73) , ruthenium (74), and 
osmium (75), high coverages of oxygenated compounds are present, and the 
coverage-potential re la t ionship  seems t o  be more nearly langmuirian. 
On gold, very l o w  coverages of the  oxygenated compounds are noted (71), 
and again the appropriate isotherm i s  Langmuirian. 

The rate of t h e  forward react ion i n  oxygen reduction may be written 

where e *  i s  the coverage with molecular oxygen, k, i s  metal indepen- 
dent, AG 
product (S02H), h G r  is  the  standmd free energy of adsorption O f  oxygen 
molecules, and ,9 is the symmetry factor .  It  i s  assumed t h a t  t he  stand- 
a r d  s t a t e  for  Q i s  0 = 1/2. I f  AG and hGr a r e  not po ten t ia l  dependent 
( t h a t  is, the Langmuir isotherm appl ies) ,  the Tafel slope f o r  this 
process will be 2RT/F, i f  ,9 = 1/2. This is experimentally observed 
on gold, s i l v e r ,  osmium, ruthenium, and iridium. 

is  the  standard free energy of adsorption of the  reaction P 

P 
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0xygenated.compounds are adsorbed on the  electrode according t o  
an equilibrium of t he  type (5,68) 

s + &o S-OH + H+ + e-* 

The equilibrium condition f o r  t h i s  react ion i s  

where again e *  i s  the  coverage of molecular oxygen by d i rec t  
absorption, A G o H i s  the  fYee energy of adsorption of -OH, and k i s  a 
metal- independent constant. 

If we assume e *  t o  be small compared w i t h  e i n  the  intermediate 
coverage range (0.2 < 8 < 0.8) where Temkin adsorption might be ex- 
pected t o  apply, with e/l-e approximately constant i n  t h i s  range of 
8, we can wri te  

log [H+] + A G ~ , ,  RT = F ~ / R T  + const. (16)  

If we assuple tha t  the  heat of adsorption of 02H i s  s imilar ly  affected 
(68) by the  changes i n  coverage, and heat of adsorption of OH, then 
with p = 1/2, and subst i tut ing Equation 16 i n  Equation 14 we 
obtain 

i a [ Po21 [ PI exp [-F@/RT) (17) 

which is  in agreement w i t h  experimental data on platinum (68), 
palladium and rhodium. 
e *  i s  small, and AGr i s  small and independent of changes i n  e ) .  Under 
Temkin conditions of adsorption of -OH t he  e f fec t ive  rate constant o f ,  
the react ion falls as 8, hence potential ,  r i s e s  and the reaction can 
be considered t o  be progressively poisoned by adsorbed oxygen atoms o r  
OH radicals .  

It i s  of i n t e re s t  t o  consider the  type of r e l a t ion  we would expect 
between the  forward react ion r a t e  of the reduction react ion and AG 

Assuming that molecular oxygen i s  adsorbed following the  Langmuir 
isotherm, we can wri te  

This equation assumes that e *  a p02 ( tha t  is, 

P' 

where 1 - e *  - 0 i s  the  available a c t i v i t y  of  vacant metal s i t e s .  

Hence, from Equations. 18 and 15 , at constant p02, &O and €i+ 

e *  = ek-I exp (AGO" - AG, - Fo)/RT ( 1 9 )  

* The S-OH i s  probably oxidized further t o  S-0, but t h i s  causes no 
f'urther change i n  the  t o t a l  coverage. 
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From Equation 15 , assuming tha t  8' i s  small compared wLth 8 

k exp (3 - AG,&/RT 
1 + k exp (Fa - AGO e =  

-on Eqilations 11; , 19 , ana 20 assuming 6 = 1/2 

exp - AGJ2RT exp - A G d 2 R T  
1 + k exp (3 - A G ~ ~ ) / R T  - - a  exp - F@/RT 

Ls A:: 
sorption of 0;;) shovld change by similar amounts from metal t o  metal, 
Equation 2 1  can be wri t ten at constant 8 

( f r e e  energy of adsorption of  O2H) and A G ~ ~  (free energy of ad- / 

P 

exp - AGJ2RT exp - AC&hRT 
+ k exp - AG,y/RT i a l  

. -:.is expression agafn has a maximum at AGoH = 0; increasing w i t h  
A? f o r  AGO,, > C, and decreasing f o r  AGoH < 0. 

E-Derimental Data on O>T;xen Reduction 
I 

F Figures  1-5 show data for  a range of metals and al loys f o r  the 
o,xygen reduction reactior- of 855 orthophosphoric acid. 
a r e  observed when i ( at 25OC) -at a poten t ia l  of 800 mV with respect 
t o  a hydrogen electrode i n  t h e  same solut ion a r e  plot ted a a ins t  metal 

', paameters  tha t  are known t o  influence heat of adsorption TI&, d- 
o r b i t a l  vacancies, 5 d charact.er). I n  addition, a p lo t  of i against  
t h e  heat of adsorption of the oxygenated react ion intermediate i s  
s h OWE. 

Volcano p lo ts  

I 

The latter has been calculated r e l a t i v e  t o  the  value f o r  gold, 
a s s m i %  t h a t  Paulings' equation fo r  heat of adsorption holds f o r  
the  adsorbed product I n  the  rate-determining s t ep  (-02H) and assuming 
that the electronegat ivi ty  of oxygen i n  the  adsorbate can be put 
equal t o  3.5. 

a r e  included here f o r  a range of pJatinum-ruthenium a l loy  electrodes.  
I n  t h i s  case, each parameter plot ted has been assumed to be d i r ec t ly  
6epe-xient on t h e  a togic  composition of t he  so l id  solut.ion. 

Publlshed polar izatfon data 3n platinum-rhodium al loys i n  d i l u t e  
sulf'uric ac id  (79) xake it appear t h a t  they could be accornodated 017 
th? risiQ- side of t h e  volcano i E  the  sale way as t?ie Pt-Ru al loys . 
and similarly, data on tke platkun-gold and palladium-gold al loys (60) 
sumest  tk t  t h e y  woulc fa l l  on the  opposite s ide  of t h e  volcano. 

Electrone a t i v i t y  values f o r  t h e  metals are derived 
froin Cardy m d  Thomas ( 7  E ) and Ls values a r e  fron 93nd (76). D a t a  
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I n  the present work it w a s  possible t o  compare the  heat of activa- 
t i o n  measured fo r  each metal or  a l loy  system w i t h  a calculated value 
( r e l a t ive  t o  platinum).? 
Pauling's equation r e l a t i v e  t o  that fo r  platinum w a s  subst i tuted i n  
Equation 14 , assuming p = 1/2, and ignoring changes i n  AGr over the 
series of metals. A p lo t  of this value against  experimental act ivat ion 
energy at 7)  = -460 mV i s  shown i n  Figure 6.  For the materials exhibiting 
Temkin adsorption ( P t ,  Rh, Pd and some Pt-Ru a l loys)  a small correction 
had t o  be made t o  the experimental energy of act ivat ion because of t he  
d i f fe ren t  value of the Tafel slope under those conditions. Horizontal 
l i n e s  on the plot indicate  the uncertainty i n  the  calculated values of 
heat of act ivat ion corresponding t o  h 0 . l  u n i t  uncertainty i n  metal 
electronegativity,  whereas v e r t i c a l  l i nes  are estimated experimental 
uncertaint ies  i n  heats of act ivat ion.  It can be seen tha t  a satis- 
factory agreement exists between calculated and experimental values, 
thus confirming e a r l i e r  suppositions tha t  this should be the case. 
It should be noted tha t  no sa t i s fac tory  correlat ion was obtained f o r  
s i l ve r ,  whose Pauling electronegat ivi ty  (1 .9 )  predicts  a much higher 
bond s t rength than would seem t o  be the case here.* 

i n  the  rate over t he  series of metals studied m e  due t o  changes i n  
preexponeritial factors  ra ther  than i n  heat of adsorption. I n  Figure 
7,the experimental value of the preexponential fac tor  f o r  each metal 
o r  a l loy  has been plot ted against t he  experimenta; heat of activation;, 
For the  Group VI11 metals and al loys a very good compensation e f fec t  
i s  exhibited with the preexponential fac tor  increasing over more than 
f ive  decades from osmium t o  platinum. Gold and s i l v e r  have similar 
preexponential values, but subs tan t ia l ly  greater  heats of adsorption, 
than those on platinum. mom Equations 19 and 20 , assuming bGr 
not t o  vary subs tan t ia l ly  over t he  series of metals examined (as 
implied i n  Figure 6 ) ,  t he  coverage of molecular oxy en e *  can be 
expected t o  be proportional t o  (1 + k exp - AGO,,/RTy? It w i l l  
therefore  be low f o r  metals of high negative AGO,, ( e .  g., osmium), and 
will rise as AGO, increases.  The rise will be slow, however, after 
AGO,,- 0 (platinum). A t  least pa.rt of the var ia t ion i n  preexponential 
factors  may be explained i n  t h i s  manner. It i s  a l so  apparent tha t  t he  
entropy of the adsorbate may not be metal-independent, but may depend 
on t h e  heat of adsorption. The experimental values of the  preexponen- 
t i a l  fac tor  on platinum, pa l l ad ium,  gold, and s i l v e r  are high - o f  
t h e  same magnitude as those calculated by Parsons (55) f o r  mobile 
adsorbates i n  the  hydrogen reaction. Thus, it i s  probable that the 
loosely bound adsorbate on these metals i s  r e l a t ive ly  mobile. In- 
creasing heat of adsorption on going from platinum t o  osmium should 
decrease adsorbate mobility so  that the  adsorbate entropy, hence t h e  
standam3 f r e e  energy of the act ivated complex, i s  decreased. 

$ The observed difference between the a c t i v i t i e s  of gold and s i l v e r  i n  
acid and a lka l ine  solut ion is  very striking. 

t The absolute value of the 02H bond strength cannot be determined, as 
the  Dx-x value - that is, the strength of the 0-0 bond i n  a hypothetical 
diperoxyl compound - is indeterminate. 

The S-02H bond strength (AG ) calculated from P 

It i s  c l ea r  that fo r  t h i s  electrode system, the  major differences 
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Summe;trv and Application t o  Fuel Cells 

It thus appears that  the  oxygen electrode react ion i s  thermodynam- 
i c a l l y  l imi t ed  on the noble metals. Preexponential factors  o f  the 
rate-determining oxygen reduction reaction are close t o  those of t h e  
hydrogen electrode reaction, but heats of act ivat ion are very much 
higher. Attempts t o  reduce the heats of  ac t iva t ion  by increasing 
the heat of adsorption of react ion intermediates simply r e su l t  i n  
lowered rates due t o  compensating changes i n  the  preexponential 
factor .  The rate of the oxygen electrode react ion under Langmuir 
adsorption conditions is  an ascending and descending function of the 
standard free energy of adsorption of -02H (o r  similar oxygenated 
species), with a maximum when this quantity is  equal t o  zero. 
occurs approldmately at platinum as i s  the case f o r  -H i n  the hydro- 
gen electrode reaction. Consequently, it seems t o  be highly improbable 
that  the  rate constants of the oxygen reduction mechanism on the  
noble metals i n  acid solut ion can be subs tan t ia l ly  increased from 
present levels .  
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Figure 1. 02 Reduction i n  85$ Orthophosphoric Acid: Plot of i a t  

% & - o d e  Metal. 
from Bond (77):)  

-460 mV at 2 5 O C  Against Latent Heat of Sublimation .of 
(Latent heat o f  sublimation values a re  

d-BAND VACANCIES 

Figure 2. 02 Reduction i n  85% Orthophosphoric Acid: Plot  of i a t  
-460 mV at 25OC Against +Orbital Vacancy Value o f  

% l k t r o d e  Metal. 
18. 
same as that f o r  ruthenium and i ron . )  

(For d-orbi ta l  vacancy values, see R e f .  
The value f o r  osmium has been considered t o  be the 
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Figure 5. O2 Reduction i n  85% Orthophosphoric Acid: Plot of  i at 
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Figure 6 

< .  

02 Reduction i n  85% Orthophos horic Acid: Plot of Experimental 
Hea t  of Activation (at q = - 4 h  mV) Against Calculated 
Value (Relative t o  P t ) .  
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Figure 7. 02 Reduction i n  85% Orthophosphoric Acid: Plot of Experi- 
mental Heat of Activation (at q = -460 mV) Against Preex- 
ponential  Factor. 


